Austrian physicist Friedrich Hasenohrl's work contributed to the equation E=mc2.

Updated on: Monday, January 28, 2013

A little known Austrian physicist may have contributed to Einstein's famous equation E=mc2, US scientists have claimed.

In a study to be published in the European Physical Journal H, Stephen Boughn from Haverford College in Pensylvannia and Tony Rothman from Princeton University in New Jersey argue how Austrian physicist Friedrich Hasenohrl's work, for which he now receives little credit, may have contributed to the equation E=mc2.
 
The physicists outline the role played by Hasenohrl in establishing the proportionality between the energy (E) of a quantity of matter with its mass (m) in a cavity filled with radiation.

According to science philosopher Thomas Kuhn, the nature of scientific progress occurs through paradigm shifts, which depend on the cultural and historical circumstances of groups of scientists.
 
Concurring with this idea, the authors believe the notion that mass and energy should be related did not originate solely with Hasenohrl. Nor did it suddenly emerge in 1905, when Einstein published his paper, as popular belief would have it, researchers said in a statement.
 
Given the lack of recognition for Hasenohrl's contribution, the authors examined the Austrian physicist's original work on blackbody radiation in a cavity with perfectly reflective walls.

The study seeked to identify the blackbody's mass changes when the cavity is moving relative to the observer.
 
They then explored the reason why the Austrian physicist arrived at an energy/mass correlation with the wrong factor, namely at the equation: E = (3/8) mc2.

Hasenohrl's error, they believe, stems from failing to account for the mass lost by the blackbody while radiating.
 
Before Hasenohrl focused on cavity radiation, other physicists, including French mathematician Henri Poincare and German physicist Max Abraham, showed the existence of an inertial mass associated with electromagnetic energy.
 
In 1905, Einstein gave the correct relationship between inertial mass and electromagnetic energy, E=mc2.  Nevertheless, it was not until 1911 that German physicist Max von Laue generalised it to include all forms of energy.

More Education news