Reg. No. :			١
THE PERSON NAMED IN COLUMN			J

Question Paper Code: P 1181

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Seventh Semester

Computer Science and Engineering

CS 1007 - ADVANCED OPERATING SYSTEMS

(Regulation 2004)

Time: Three hours

Maxin, um: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- What is the purpose of distributed operating system?
- 2. Write down the requirements of mutual exc. sion algorithm.
- 3. Define the happened before relation.
- 4. Write down the two favourable conditions for deadlock detection.
- 5. What are the three well known agreement problems in distributed systems?
- Give the writing policies and their advantages.
- 7. Define referency monitor.
- 8. What is authentication server?
- State the two features of smart scheduler.
 - 10. What are the requirements of a database operating system?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Write about the important issues in the design of a distributed operating system. (10)
		(ii)	Write about the inherent limitations of a distributed system. (6)
			Or Helicine and Art
	(b)	(i)	Briefly explain the Huang's termination detection algorithm. (8)
		(ii)	Explain the Singhal's token-based heuristic algorithm. (8)
12.	(a)		russ the various issues in the design and melementation of ributed file systems. (16)
			Or Or
	(b)	Ехр	lain any two non-token-based mutual carcution algorithms. (16)
13.	(a)	(i)	Describe the migration and full-replication algorithms to implement distributed shared memory was eas. (8)
		(ii)	Describe the type-special coherence mechanisms in Munin
			system. (8)
	(b)	(i)	Describe the load distributing algorithms and discuss their performance. (8)
		(ii)	9
		(14)	Explain the operation-based and state-based approaches to implement backward-error recovery. (8)
14.	(a)	(i)	Exercibe the access model of protection with an example. (6)
		(ii)	Explain the Lattice Model of Information Flow with examples. (10)
			^
			Or
	(b)	(i)	Describe the Data Encryption Standard technique. (8)
		(ii)	Discuss the private key and public key protocols in one-way

15. (a) (i) Write about the different types of interconnection networks. (6)

> Describe the various multiprocessor scheduling strategies that (ii) address the issues of preemption inside critical sections, cache corruption and context switching overheads. (10)

> > Or

Address the anomalous situations with examples when a set of (b) (i) transactions are concurrently running.

(ii) Explain the Two -Phase Locking (2PL) scheme. (10)